If it's not what You are looking for type in the equation solver your own equation and let us solve it.
d^2-7d+12=2
We move all terms to the left:
d^2-7d+12-(2)=0
We add all the numbers together, and all the variables
d^2-7d+10=0
a = 1; b = -7; c = +10;
Δ = b2-4ac
Δ = -72-4·1·10
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-3}{2*1}=\frac{4}{2} =2 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+3}{2*1}=\frac{10}{2} =5 $
| 7(x-2)=3+8x-x-7 | | 6x-6(-3x+10)=-12 | | C=5w+8 | | 2x+x/2+90=180 | | 18/30=3/a | | 4x/2=32 | | 0/4=6x | | 3x-4(x+10)=4 | | 5x+7=134 | | -8+4+3x=2x+10+2x-6 | | 16=m/4-8 | | 12-1/5r=2r=+1 | | 23=3r | | 6x-3(-x+12)=9 | | 7q^2–6q–5=0 | | 47=3r-10 | | 3y-21=42 | | -10x-5=35 | | 3x^2=6=4 | | 2x+5=5(x+1)+-3x | | 275=j(25) | | 56=2a+20 | | 3^(x+5)=3.9^x | | 1x+17=5x-23 | | 4x/3+5/4=10x-2x/2 | | 6-x/4=3 | | 5.9-2x=7.1 | | 6=3-19x | | -3/4m-1/2=2=1/4m | | 21+3p=-6(1-5p) | | 7c-3=c+5 | | 5x+7(x-2)=6x+34 |